

PPPL Theory Seminar, April 27, 2017

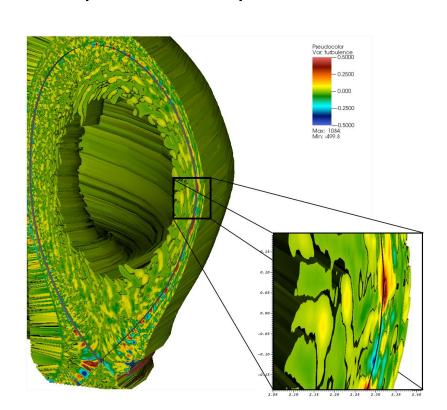
Gyrokinetic simulation of a fast L-H like bifurcation dynamics in a realistic diverted tokamak edge geometry

S. Ku¹, C.S. Chang¹, G.R. Tynan², R. Hager¹, R.M. Churchill¹, I. Cziegler^{2,†}, M. Greenwald³, A. Hubbard³, J. Hughes³,

¹Princeton Plasma Physics Laboratory ²UC San Diego. ³PSFC, MIT, [†]Present Address: Univ. York, UK

SciDAC-3 Center for Edge Physics Simulation

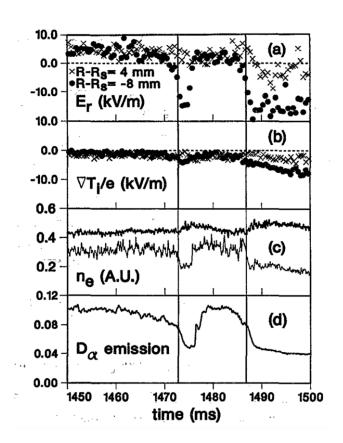
*Funding provided by DOE FES/ASCR. Computer resouces provided by OLCF


UC San Diego

Outline

- A brief survey of experimental L-H bifurcation observations
- Difficulties in the L-H transition simulation
- XGC1 simulation in a model C-Mod plasma
 - Suppresion of turbulence, and heat & particle transport
- New physics learned
- Summary and discussion

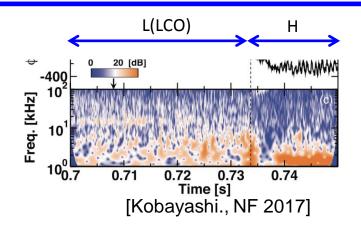
Density fluctuation from blobby and ITG-TEM turbulence in a DIII-D H-mode like edge plasma.

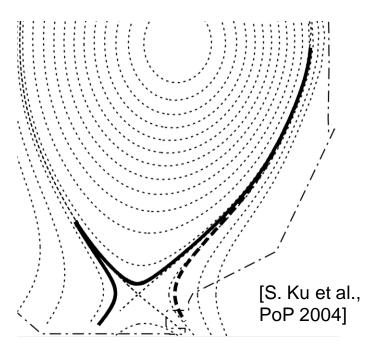

Different experimental observations in L-H transition

Two different types of experimental observations for the role of the sheared-ExB flow (V'_{ExB}) in edge-turbulence bifurcation:

- 1. Turbulence generated zonal V'_{ExB}: <u>Reynolds stress</u>
 - Yan et al., IAEA16 & PRL14; Schmitz, IAEA16; Tynan, NF13; and others]
- 2. Neoclassically generated V'_{ExB}: X-point orbit-loss [Chang et al, PoP02]
 - Kobayashi et al., PRL13, and others (X-point orbit-loss)
 - Cavedon, NF17 (Neoclassical)
 - NSTX finds that P_{L-H} is strongly correlated with orbit-loss V'_{ExB} [Kaye, NF11; Battaglia, NF13]

1. Turbulent zonal V'_{ExB} & L-H bifurcation in experiment

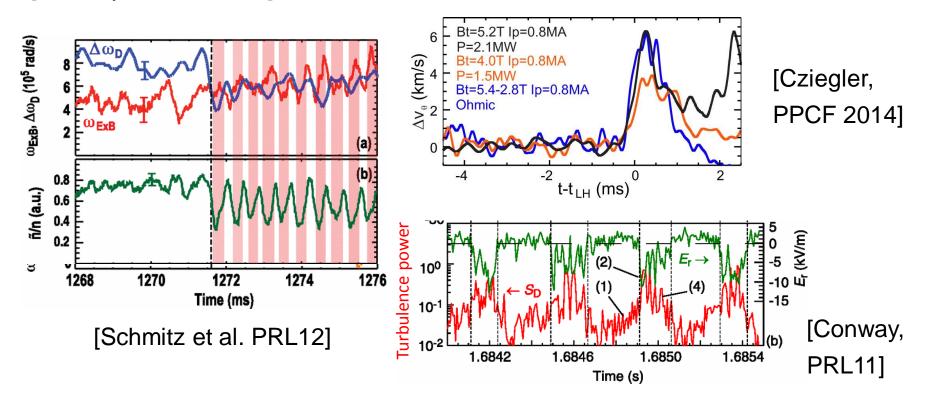

- $F_{\theta,Reynolds} = -d < \delta V_r \delta V_{\theta} > /dr$
- Became basis for the predator-prey model [Kim-Diamond, PRL03, and others]
 - When the Reynolds energy extraction (∫dt F_{θ,Reynolds}) exceeds the turbulent kinetic energy, turbulence quenching can occur.
- Unanswered questions if the Reynolds stress solely responsible
 - Right after the turbulence quenching, what is supporting the strong V'_{ExB}?
 - Several experiments report that a strong ∇p (and its effect on V'_{ExB}) develops only well after a fast bifurcation [Moyer et al., PoP1995; and others]
 - What breaks the symmetry in the F_{Reynolds}, thus the V'_{ExB}, direction?
 - Why some machines do not see much Reynolds work?



[Moyer et al., PoP1995]

2. Neoclassically generated V'_{ExB} & L-H bifurcation in experiment, w/o much Reynolds work

- V'_{ExB} is driven by∇p? [Cavedon et al., NF2017, ASDEX-U]
- Orbit-loss-driven V'_{ExB} [Kobayashi et al., PRL2013, and others]
- NSTX found P_{L-H} is strongly correlated with orbit-loss V'_{ExB} [Kaye, NF2011; Battaglia, NF2013]
- Could it be possible that the Reynolds stress and orbit loss mechanism work together, with one stronger than the other depending upon the plasma/geometry condition?
- Could the combined Reynolds and X-loss physics provide the missing puzzle pieces in L-H transition physics?



Experimental observations of L-H bifurcation time scale, GAM, and LCO

- When the heating power is close to P_{LH}, the bifurcation is observed to be slow with many limit cycles (I-phase) [Schmitz et al. PRL12 and others]
- When the heating power is well above P_{LH}, the bifurcation is forced to be fast (< 0.1 ms) with an abbreviated I-phase [Cziegler et al.,PPCF14, and others]

GAM and Limit cycle oscillation observed as L-mode approaches L-H bifurcation [Conway et al., PRL11]

Why has a gyrokinetic L-H study not been done previously?

Difficulty

- Multiscale in space and time
 - Turbulence
 - Neoclassical with ion orbit loss
 - Neutral particles with ionization and charge exchange
- Magnetic separatrix (q=∞), which interfaces two different magnetic topology
- Nonlocal physics
 - Radial turbulence correlation width ~ plasma gradient scale length ~ ExB shearing width ~ neutral penetration length
- Large amplitude nonlinear turbulence: δn/n > 10%
- Non-Maxwellian plasma
 - Requires fully nonlinear and conserving Collisions
- → Total-f simulation with ~100X more number of marker particles than delta-f simulation in the complex edge geometry: XGC.
- → We thought it would require >100PF computer, non-existent in US.

Previously, compute resources discouraged us from studying the L-H transition physics

If we were to establish a global transport-equilibrium in an L-mode plasma, move toward the bifurcation by quasistatically increasing P_{heat} , go through the bifurcation, and build up pedestal, we would not have enough compute resources to study the transition.

→ Requires >10X faster computer than Titan at ORNL.

A new strategy to make the transition physics study possible on Titan:

- Bifurcation may not be a global transport-equilibrium phenomenon
 - Bifurcation itself may be a localized phenomenon at edge
- Study only the edge bifurcation itself, as soon as the L-mode edge turbulence is established.
 - Force the bifurcation by having P_{edge}>>P_{LH}
 - Experimentally, a forced L-H bifurcation action could be completed in <0.1ms (Cziegler PPCF 2014, Yan-McKee, PRL2014).
 - Take advantage of the fast establishment of edge physics
- Low beta electrostatic simulation

In the core plasma, f evolves slowly

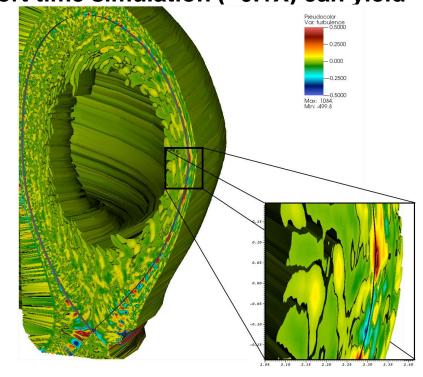
For this argument, let's use the drift kinetic equation $\partial f/\partial t + (\mathbf{v}_{||} + \mathbf{v}_{d}) \cdot \nabla f + (e/m)E_{||} v_{||} \partial f/\partial w = C(f,f) + Sources/Sinks$ where w is the particle kinetic energy.

In a near-thermal equilibrium, we take the "transport ordering" (= diffusive ordering):

$$\partial f/\partial t = O(\delta^2)$$
, $S = O(\delta^2)$, with $\delta < < 1$

- Let $f=f_0+\delta f$, with $\delta f/f_0=O(\delta)$, $\delta <<1$, $V_d/V_{||}=O(\delta)$, $E_{||}/m=O(\delta \text{ or } \delta^2)$
- $O(\delta^0)$: $V_{||} \cdot \nabla f_0 = C(f_0, f_0) \rightarrow f_0 = f_M$: H-theorem
- $O(\delta^{1}): \partial \delta f/\partial t + v_{||} \nabla \delta f + v_{d} \nabla f_{0} + (e/m) E_{||} v_{||} \partial f_{0}/\partial w = C(\delta f)$
 - \diamond Perturbative kinetic theories then yield transport coefficients = $O(\delta^2)$
 - \diamond In this case, fluid transport equations ($f_o \rightarrow n, T$) can be used with the kinetically evaluated or ad hoc closures
- \rightarrow GK simulation is cheaper per physics time, but δf equilbrates on a slow time scale $O(\delta^1 \omega_{bi}) \sim ms$. And, a meaningful time evolution of f_0 in V_T frame can only be obtained in a long "transport-time" scale $O(\delta^2 \omega_{bi})$. V_T evolves on an even slower time scale.

In edge plasma, f evolves fast


- Ion radial orbit excursion width ~ pedestal width & scrape-off layer width
- Orbit loss from ψ_N <1 and parallel particle loss to divertor

All terms can be large: \sim either $O(\omega_{bi})$ or $O(v_C)$

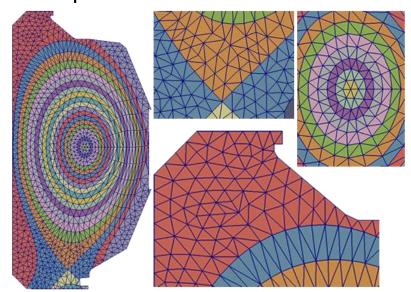
- $\mathbf{v}_{||} \cdot \nabla f \sim \mathbf{v}_{d} \cdot \nabla f \sim C(f, f) \sim eE_{||} v_{||} / m \partial f / \partial w \sim O(\omega_{bi}) \sim 0.05 \text{ ms in DIII-D}$
- f equilibrates very fast: $\partial f/\partial t + (\mathbf{v}_{||} + \mathbf{v}_{d}) \cdot \nabla f$ (e/m) + $E_{||}v_{||}\partial f/\partial w = C(f,f) + S$
- If $S_{neutral}$ is small, it does not affect the fundamental structure of f.

Fast-evolving nonthermal kinetic system: expensive per physics time → extreme scale computing. However, a short time simulation (~0.1X) can yield

meaningful physics.

XGC gyrokinetic codes (V&V summary at epsi.pppl.gov)

XGC1: X-point Gyrokinetic Code 1


- Kinetic ions and electrons
- Lagrangian PIC + Eulerian 5D grid
- Heat and momentum source in core
- Monte Carlo neutrals with wall recycling
- Fully nonlinear Fokker-Planck Coulomb collision operation
- Logical wall-sheath
- Unstructured triangular mesh
- EM with fully implicit drift-kinetic electrons (partially verified).

XGC1-hybrid: GK ions + fluid electrons

Implicit fluid electrons (Hager PoP17)

XGCa: Axisymmetric gyrokinetic version of XGC1

XGC0: Axisymmetric and flux surface averaged drift-kinetic version

Full-f + Neutral particles + Unstructured triangular grid

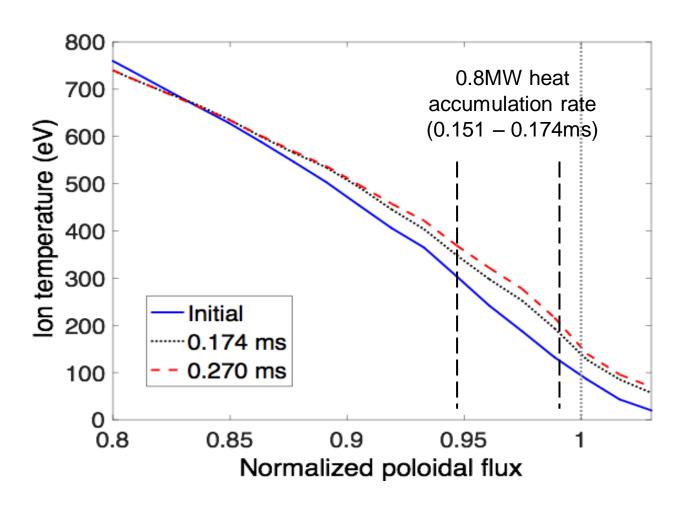
- → Expensive to simulate
- → Requires extreme scale HPCs

For the present L-H bifurcation study, we have performed a low-beta electrostatic edge simulation using XGC1

Plasma condition

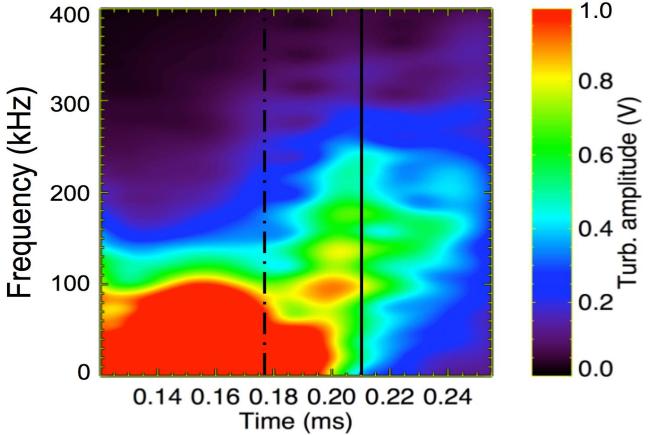
- C-Mod #1140613017 while in L-mode, single-null
- β_e ≈0.01% (< m_e/m_i) in the bifurcation layer
- ∇B-drift direction has been flipped to be into the divertor

Include the most important multiscale physics


- Neoclassical kinetic physics
- Nonlinear electrostatic turbulence
 - ITG, TEM, Resistive ballooning, Kelvin-Helmholtz, other drift waves
- Neutral particle recycling with CX and ionization
- Realistic diverted geometry

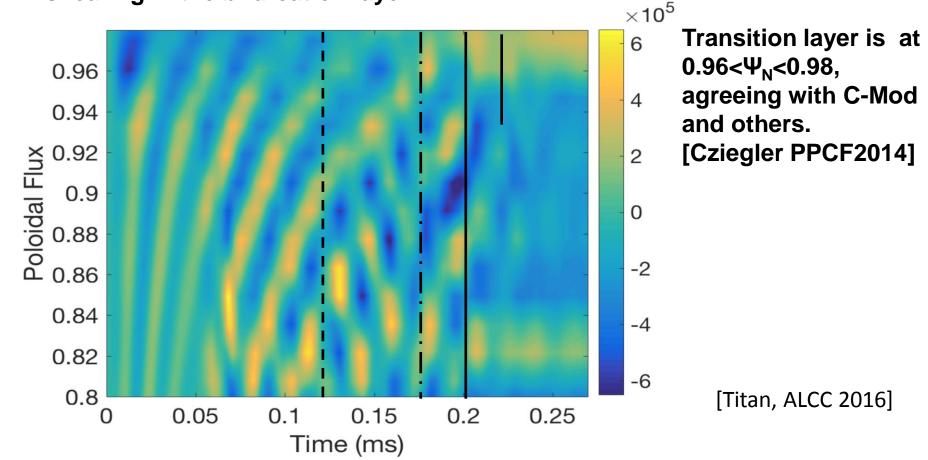
Electromagnetic correction to the present result is left for a future work.

Use a L-mode plasma from C-Mod (beta~0.01%)

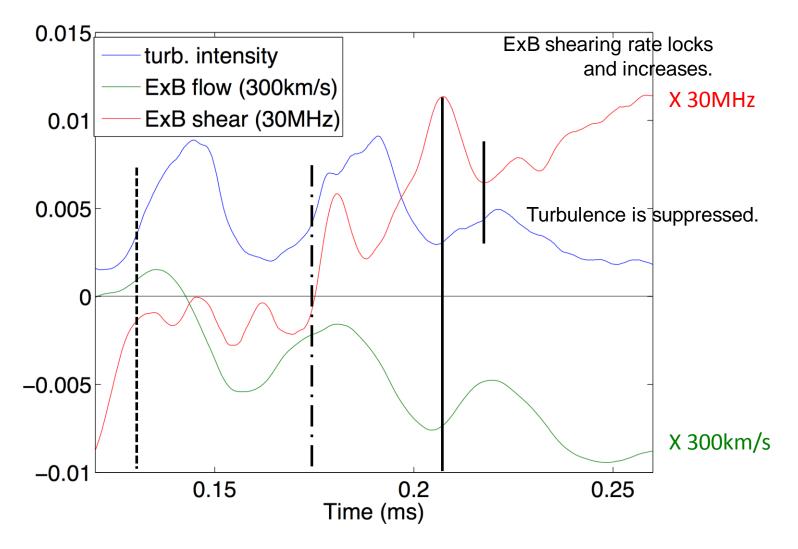

Edge temperature increases from heat accumulation

In a developed H-mode pedestal, $dV_E/dr > 0$ at $\Psi_N \sim 0.97$. Any bifurcation mechanism needs to be consistent with this sign.

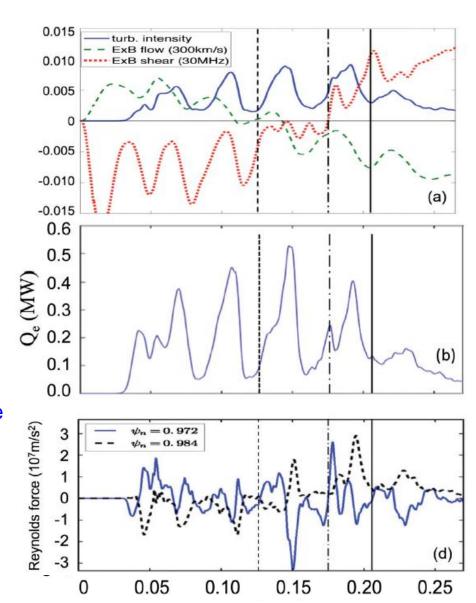
Overview: Turbulence behavior at bifurcation


- 1. t~0.175ms, higher frequency, lower amplitude turbulence is generated together with suppression of lower frequency, higher amplitude turbulence starts (eddy tearing by ExB shearing, to be shown).
- 2. t~0.21ms, suppression of the higher amplitude turbulence (red) is complete, and suppression of the lower amplitude turbulence begins (shades of green and blue).

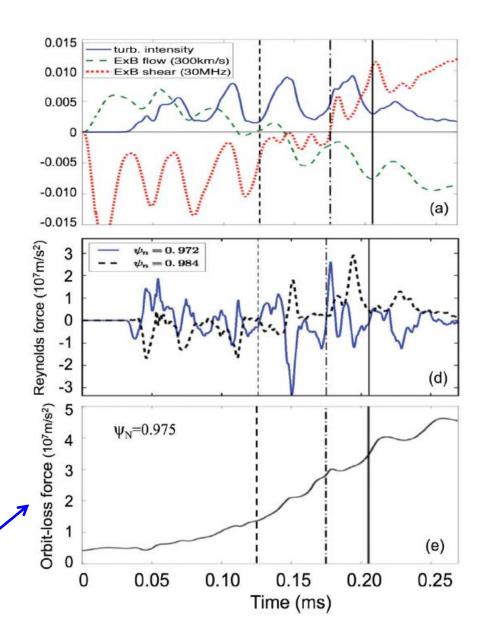
Time-radius behavior of the ExB flow shear V_F'


- 1. t=0.12ms, V_E settles down in $\Psi_N \sim 0.97-98$
- 2. t<0.17ms, positive part of $V_{\rm E}$ does not penetrate into the edge layer (p>0) Gyrokinetic Poisson Eq. $(\rho_i^2/\lambda_D^2)\epsilon_0 B~V_E' \simeq e(n_e-n_{i,gc})$
- 1. $t\sim0.175$ ms, something kicks the $V_E'>0$ flow into the edge layer ($\rho<0$)

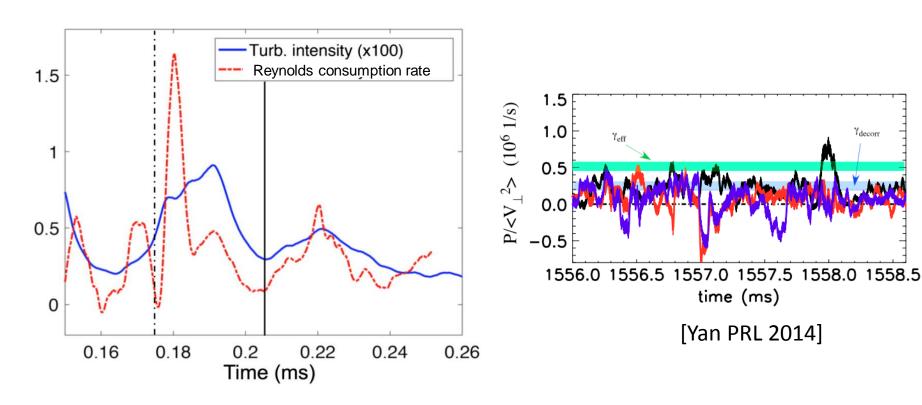
2. t ~0.2ms, something then locks the sheared ExB flow into the mean ExB shearing in the bifurcation layer.


Detailed local analysis at $\Psi_N=0.975$:

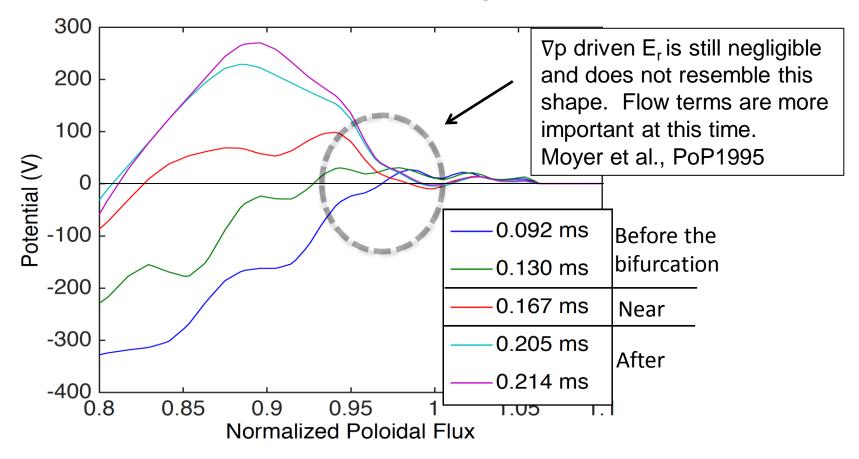

Important physics quantity is the ExB shearing rate, V_E' , not V_E . The bifurcation criterion is identified to be $V_E' > 300 \text{ kHz}$ (Maximum growth rate of dissipative TEMs [Romanelli PoP 2007]).


 $(0.96 < \Psi_N < 0.98, per Cziegler PPCF 2014)$

- Edge transport fluxes are non-local and follow the GAM behavior, with suppression at the "critical" time.
- The Reynolds force from turbulence $F_{\theta,Reynolds} = -d < \delta V_r \delta V_\theta > /dr \ fluctuates$ in both directions, and exhibits shearing
- However, the Reynolds force is a non-player after the bifurcation.
- Questions:
 - What is keeping the turbulence suppressed after the bifurcation?
 - Why is the negative Reynolds force not effective
 - What is pushing V'_{ExB} further to positive after 0.175 ms?
- It is reasonable to conjecture that there is another force in the positive
 V_E' direction



The orbit loss physics provides answers to all three questions. [Chang, PoP 2002]

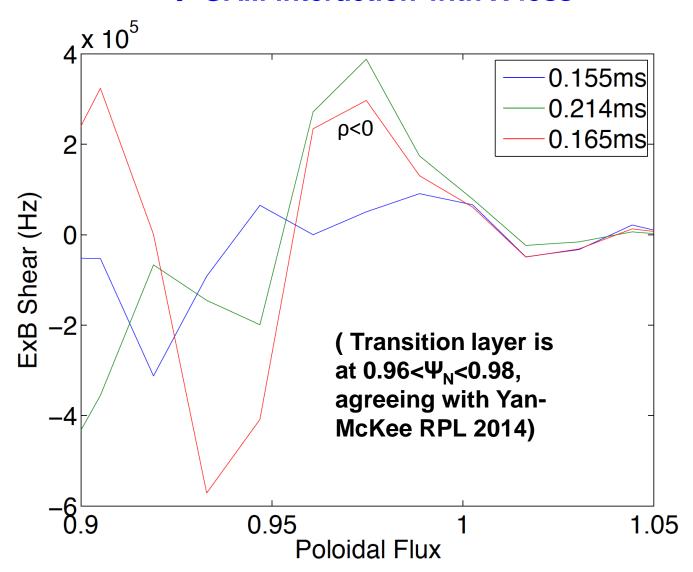


Why does the turbulence get cut-off around 0.18ms? What triggers the bifurcation action?

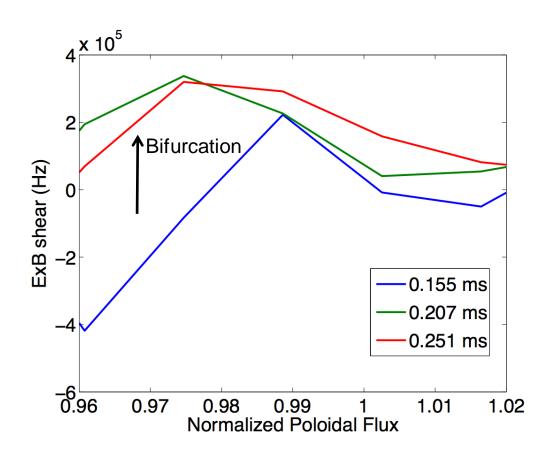
The normalized, turbulence Reynolds consumption rate $P=\langle \tilde{v}_r \tilde{v}_\theta \rangle V_E'/(\gamma_{eff} \tilde{v}_\perp^2/2)$ becomes >1 in the beginning of the bifurcation action (I-phase), but becomes <1 after that \rightarrow Zonal flows cannot be responsible for keeping the turbulence suppressed.

Electrostatic potential profile at several different times measured at outboard midplane

- Transition to Φ">0 is the noticeable feature across the turbulence bifurcation time in the edge transition layer, showing a signature of ion X-loss dominant charge loss after the bifurcation.
- However, Φ is still >0 in most of the edge layer.

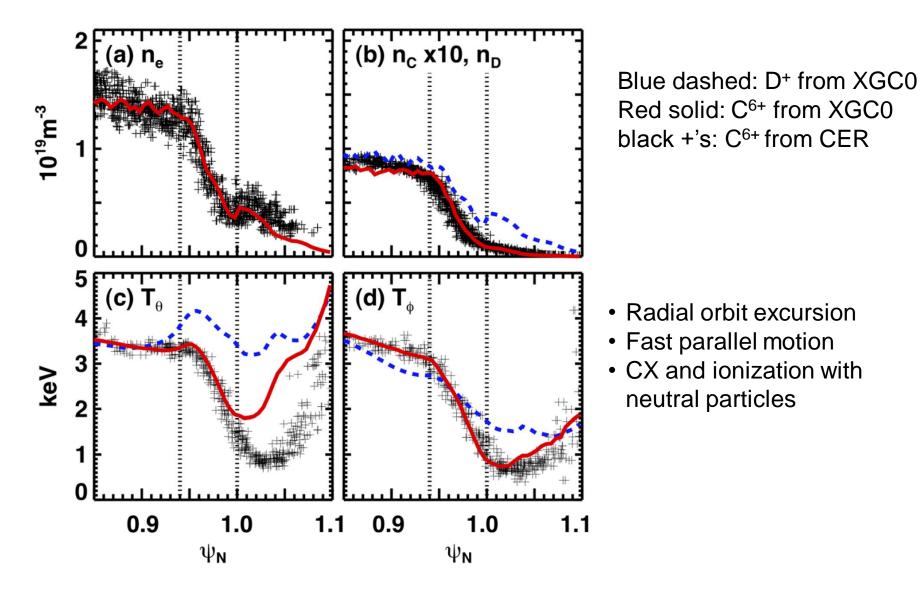

Summary and Discussions

- The total-f XGC family codes have been making important scientific discoveries on leadership class computers, which could not have been possible otherwise.
- A forced, fast L-H bifurcation dynamics has been revealed.
- The turbulent Reynolds stress and the neoclassical X-loss physics work together in achieving the L-H bifurcation.
 - When combined together, the puzzle pieces appear to come together.
 - How will the geometry and plasma condition change their combination? → Neoclassical NSTX could be a good test bed.
 - How will this affect P_{L-H} in ITER where the E_{r, NEO} is relatively weak?
- Isotope effects may be studied in the near future.
- EM correction to the present electrostatic result will be studied in the future.
- We will study I-mode in the future.

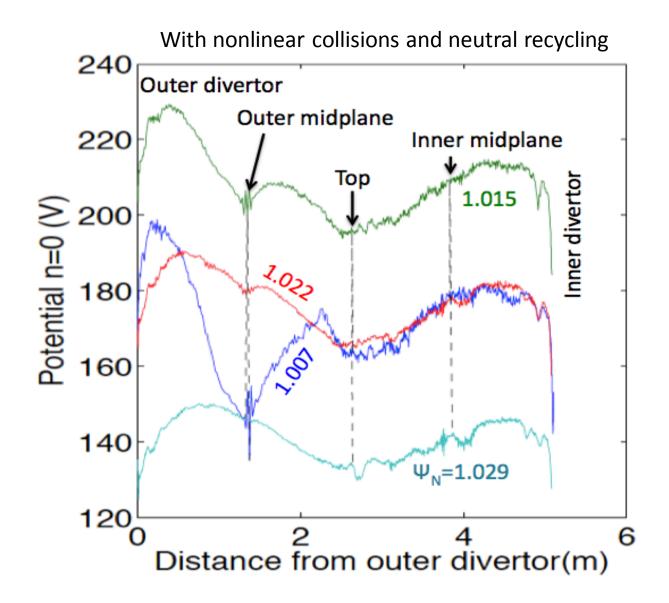

Backup slides

ExB shearing from GAM is transferred to the mean ExB shearing inside the transition layer (0.95< ψ_N <1), but not outside (ψ_N <0.95)

→ GAM interaction with X-loss



The edge ExB shearing rate has jumped, to the direction of negative guiding center charge.



Non-Maxwellian plasmas in DIII-D tokamak edge

D.J. Battaglia et al, Phys. Plasmas 21, 072508 (2014)

Large E_{||} exists in the scrape-off layer. From XGC1 for self-consistent non-thermal physics

INCITE 2015, Titan